CHAPTER 4 INTERRUPT FUNCTIONS

4.1 Interrupt Controller

The uPD70325 and 70335 contain an interrupt controller that can control multiple interrupts from 17 sources. The
interrupt controller divides a total of 17 interrupt sources—five external and 12 internal sources—into groups for
management, and can perform programmable multiprocessing control in group units. Also, one of three interrupt
servicing functions; vectored interrupt, register bank switching, and macro service, can be selected according to the
interrupt source property.

The number of external interrupt sources can be easily increased by connecting an external uPD7 1059 or an external
interrupt controller equivalent to the yPD71089.

The interrupt request control registers and macro service controt registers are used to set up the interrupt
controller. Registers are provided for each interrupt source. The interrupt control instructions are listed below.

Bl (Disable Interrupt)

E! {Enable Interrupt)

BETl (Return from Interrupt)

RETRB! {Return from Register Bank Switching Interrupt)

FINT (Finish Interrupt}, which informs the internal interrupt controller of intarrupt servicing completion

The interrupt source register and the interrupt priority register are also provided 1o recognize the interrupt request
acknowledgment state,

65

CHAPTER 4

INTERRUPT FUNCTIONS

4.2

Interrupt Sources

There is a total of 17 interrupt sources (five external and 12 internal) for the uPD70325 and 70335. Interrupts
from these 17 sources are divided into eight groups and are controlled by the interrupt controller. The configuration
of these groups is fixed by hardware. Five of these eight groups (all except NMI, INT, and INTTB} can be specified
priority levels from 0 to 7 (D being the highest} by software., Functions supported by the interrupt controfier vary
depending upon the interrupt source. Table 4-1 lists these interrupt sources,

Table 4-1. Interrupt Source List (1/2}

Pricrity lgve(Note Muitiproc-
g Interrupt source External/ Vactar Macro Bank - essing
0 internal sarvice | switching | Setting | Inter-group | Intra-group | control
= | NMI Not Not Canngt Net
2 External 2 , \ 0 -
Z § [Non Maskable interrupt) availabie | available be set canwolled
E] INT e | External Not Hot Cannot . Not
i 3 {INTerrupt) xerna input available | available be set T controlled
INTTURQ
. . 28 1
§- {INTerrupt from Timer Unit0)
E L nNTTUt) . .
é (INTerrupt from Tirer Unit!) tntermal 29 Available | Awvailable | Can be set 1 2 Controlle
= | INTTUZ
] 20 3
(INTerrupt from Timear Unit2}
INTDO
g (INTerrupt from DMA channel0) 20 N !
imernal ot Availabl 2 Controlled
5 ot ema available vailable | Can be seot Ll
(INTerrupt from DMA channel) o 2
INTPC
: 24 1
{iNTerrupt from Peripherat#(}
2 [INTer
£ . .
5 (INTerrupt from Peripheral#1) External 25 Available | Awvailable | Can be set 3 2 Controlled
INTP2
26 3
(INTerrupt from Perpheral#2)

Note The intergroup and intra-group priority levels indicate the acknowledgment sequence when interrupt
requests having the same priority level assignments occur at the same time.

CHAPTER 4

INTERRUPT FUNCTIONS

Table 4-1, Intarrupt Source List (2/2)

e Priority lavertiote Multiproe-
2 interrupt source Extermall | yecpor | Macro Bank essing
& internal sarvice switching Seming | Inter-group | Intra-group | control
INTSERQ
, Nat
; {INTerrupt from Serial ERror of 12 available 1
€ channeid)
1]
‘S: INTSRO
1‘?‘ INTerrupt from Serial Recsiver Intermnal 13 Available | Avaitable | Can be set 4 2 Controlled
;::3 of channeld)
% INTSTQ
@ | {INTerrupt from Serial 14 Available 3
Transmitter of channel(}
INTSER?
~ | UNTerrupt from Serial ERror of 16 Not 1
. available
§ channel1}
B | INTSR1
o
é {INTerrupt from Sarial Receiver Internal 17 Avaitable | Available | Can be set -3 2 Controlled
g of channel1)
.'g INTST1
9 | (INTerrupt from Serial 18 Available 3
Transerutter of channeli}
Q
E INTTE Cannot be
{INTerrupt from Time Base Internal k1| Not Not set & - Controlled
2 available | available | ot
£ | counter) 1

Note The intergroup and intra-group priority levels indicate the acknowledgment sequence when interrupt
requests having the same priority level assignments occur at the same time.

67

CHAPTER 4 INTERRUPT FUNCTIONS

4.3 Priority Level Control

4.3.1 Multiple interrupt priority {evel control
Muitiple interrupt priority level control is performed in group units for all interrupts except NMI and INT.
Multiple interrupt servicing control is performed during the El state. Therafore, set the El using a given interrupt
service routine before performing multipie servicing. However, multiprocessing controf can alsc be performed in
the Di state for interrupt responses by macre service.

4]

2)

{3)

(4)

Multiprocessing control

Under multiprocessing control, any interrupt having a higher priority level than the interrupt being serviced
is acknowledged, the interrupt being serviced is stopped, and the higher-priority interrupt is then serviced,
Any interrupt that has a lower priority level than the interrupt being serviced is held pending. The pending
interrupt is acknowledged when the interrupt being serviced terminates as long as the interrupt mask bit in
the interrupt control register {provided for each interrupt source) has not been set and the interrupt request
fiag has not been reset by the current interrupt service routine.

Multiple interrupts from interrupt sources having the same pricrity level or from within the same group cannot
be serviced.

Interrupt responses to all interrupts except NMI, INT, and software interrupts

For interrupt responsas to these interrupts, the FINT instruction must be executed at the end of a given
interrupt service routine to inform the interrupt controlier of the interrupt service routine’s completion. If the
FINT instruction is not executed, the only subsequent interrupts to be acknowledged are those that have a
priority level higher than the interrupt for which the FINT instruction was not executed (see section 4.10
interrupt Priority Register (ISPR)).

Figure 4-1 shows the servicing mode for interrupts that are subject to multiprocessing control.

Interrupt responses from NM! and INT
NMI and INT interrupt responses are not subject to multiprocessing contral. INT is acknowledged when
interrupts are enabled (NMI is always acknowledged).

Setting of priority leveis

Eight priority levels from 0 to 7 {0 being the highest) can be set as desired for each interrupt group. The priority
level also indicates the number of the selected register bank when using the register bank switching function
described below. The priority level is set via the three bits PRO to PR2 in the intarrupt control register that
is provided for each interrupt source ({the set priority fevel will not change as long as the settings for PRO to
PR2 remain the same}. However, the priority ievel setting is effective only in the interrupt control register
of the interrupt source that has the highast priority level in the interrupt group. This setting is ignored if it
is written to any other interrupt control register. When read, the return vatue is fixed to 7. When a reset
signal is input, all priority levels are initialized to 7. See the Cautions on Interrupt Priority Leveis and
Servicing Sequencas in section A.d.

CHAPTER 4 [INTERRUPT FUNCTIONS

Figure 4-1. Servicing Mode of Interrupts Subject to Muitiple Servicing Control

Interrupt request
IF=1

Corresponding YES {IMK = 1}

interrupt

IMK =1

Transmission to interrupt controller is held pending

YES {equal to or lower}

*1: Does the interrupt have a
lowaer priority level than
NO (High) the interrupt being serviced?

YES (MS/ANT = 1)

NO [MS/INT = 0
YES *2: 1s there ancther interrupt from

PENDING A that has a
Acknowledgment by
macro service (IF = 0}
YES (E = 0}
=0 -

higher priority lgvel?
NO (IE = 1)

YES (ENCS = 1)
NO {ENCS = 0}

¥
Acknowledgment by Acknowledgment by
vectored interrupt register bank switching PENDING A
| =0} function (IF = D)

Interrupt controller is
held pending

69

CHAPTER 4 INTERRUPT FUNCTIONS

4.3.2 Priority level control for simultaneously occurring interrupts

When two or more interrupts occur simultaneously, NMI has the highest priority level for acknowiedgment and
INT has the lowest. The pricrity levels of interrupts other than NMI or INT are the same as those of multiple interrupts.
Hardware-fixed priority ievels are applied to groups that are specified the same priority Jevel. Similarly, priority levels
in each group are applied to the interrupts in the group.

Examples of priority level control are listed below.

Examples 1. If INTSRO (specified priority level 3) and INTTUZ {specified priority level 8) oceur at the same time,
INTSRO is acknowledged first.

2. If INTPQ and INTP1 occur at the same time, INTPQ is acknowledged first.
3. If NMI and INTD1 occur at the same time, NMI is acknowledged first,
4, [f INTTB and INT occur at the same time, INTTB is acknowledged first.

5. if INTSER1 and INTTU1 (both specified priority jevel 4) ocour at the same time, INTTU is
acknowledged first.

70

CHAPTER 4 INTERRUPT FUNCTIONS

4.4 interrupt Requests

b}

(2)

(3)

(4)

Occurrence of interrupt requests

When an interrupt request oceurs, IF (bit 7) is set to 1 in the corresponding interrupt request control register.
Setting IF to 1 indicates the occurrence of an interrupt request.

Interrupt requests also occur when IF is set by software.

Acknowledgment of interrupt request

When an interrupt request is acknowledged, IF {bit 7) is reset to 0 in the corresponding interrupt reguest
control register. Accordingly, if the same interrupt request occurs again during interrupt servicing, IF is set
to 1 and the new interrupt is held pending.

Holding of interrupt requests

Only ane interrupt request of the same source can be held pending {see Figure 4-2). This means that when
IF (bit 7) has been setto 1, if an interrupt request from the same source occurs, the interrupt request is ignored.
Interrupt requasts that occurwhen iF is setto 1 are held pending. Any pending interrupt requests are canceled
if the software resets IF to 0.

Figure 4-2. Multiple servicing of Same Interrupts

(Main routine}
El
INTR] —= (INTP1 service rautine}
(D) INTPT —=
®
FINT
RET)

{INTP1 service routine)

(D 1f another INTP1 for the same interrupt occurs while INTP1 is being serviced or while a FINT instruction
is being executed, the second INTP1 is held pending. However, only one INTP1 can be held pending.
(@ When servicing of the first INTP1 is completed, servicing starts for the INTP1 held pending.

Polling of interrupt requests

To determine the timing of interrupt request occurrences without having an interrupt acknowledged, set the
IMK bit in the interrupt control register to 1, mask the interrupt request, and poil the IF bit to detect the
occurrence of interrupt requests. However, after datecting the occurrence of interrupt requests, the IF bit
must be reset to 0 by software.

7

CHAPTER 4 INTERRUPT FUNCTIONS

45 Interrupt Response Modes

The uPD70325 and 70335 each have three interrupt response modes; a vectored interrupt function, register bank
switching function, and macro service function. Each of these functions can be selected according to the purpose
of the interrupt. The interrupt controller responds to a given interrupt request accerding to the response mode set
in the interrupt control register,

If an interrupt is acknowledged by the vectored interrupt function or register bank switching function, the contents
of PC, PS, and PSW are saved using the method corresponding to the selected function. After the PSW is saved,
the IE and BRK flags are reset and the Di state holds. Consequently, all interrupts except for those with NMI or macro
service responses and single-step interrupts are disabled (al! software interrupts except single-step interrupts can
ocour). (See section 4.11.)

4.5.1 Vectored interrupts

When a vectored interrupt is acknowledged, the current contents of PSW, PC, and PS are saved on a stack, then
one vector is selected from a vector table and the program is executed as an interrupt service routing starting at
the address indicated by the vector. All vertors other than INT interrupts are fixed. When an INT interrupt occurs,
an interrupt acknowledge cycle is generated and an interrupt vector is read from the data bus {see section 4.7 INT).
Table 4-1 lists interrupt vectors other than INT.

A return from an interrupt is made by executing an RET! instruction, However, an FINT instruction must be
executed to make a return from any interrupt except NMI and INT. Whenever a retumn is made from an interrupt,
PC, PS, and PSW are restored from the stack.

The vectored interrupt sequence is shown below (see aiso Figure 4-3).

Write the PSW value inte a temporary register.

Clear the IE and BRK flags.

Read the PC value at the vector address into an internal temporary register,
SP + 8P -2, Write the PSW value onto a stack when an interrupt occurs.
Read the PS value at the vector address into an internal temporary register,
SP +« SP - 2. Write the PS value onto a stack when an interrupt occurs.

SP « SP - 2. Write the PC value onto a stack when an interrupt occurs.

CRORONDEONORONS)

Write the values read from the vector address into the PC and PS for a branch.

Figure 4-3. Interrupt Acknowlsdge Operation

Inside the uPD70325 or 70335

Temporary
register
—wf TOMpOrary
register

Vector table Stack

nx4 SP«SP-2(D

SP«SP-2®

BC

nx4+2

PS SPe5SP-2@

@ Temporary
register

PSW

E=0
n: Vector number ®{ BRK =0

72

CHAPTER 4 INTERRUPT FUNCTIONS

4.5.2 Register bank switching function

The uPD70325 and 70335 map a general purpose register set in internal RAM and can have up to eight register
banks. Automatic register bank switching during execution of the BRKCS or TSKSW instruction or during an interrupt
response eliminates the need for software’s conventional save processing of registers on a stack. This enables high-
speed switching of program execution environments.

{1} Resgister bank switching when an interrupt request occurs

{a} Settings

To use the register bank switching function during an interrupt response, set a valua of 1 for the ENCS
bit in the interrupt control register provided for each interrupt source. One register bank can be specified
for each interrupt group. The register bank number is the same as the multiple interrupt pricrity level
and is specified in hits PRO to PR2 in the interrupt contral register. The register bank number matches
the interrupt pricrity level.

PS and vector PC in the new register bank must be initialized before using the register bank switching
function. Initialize SS and SP either before or after register bank switching. If the MOVYSPA instruction
is executed for initialization after switching, the value before switching is set in 85 and SP, and the stack
can be continuously used since hefore register bank switching. Initialize other registers as required.
However, do not change PS within the interrupt service routine,

73

CHAPTER 4 INTERRUPT FUNCTIONS

74

(b} Switching sequence
The register bank switching sequence is executed as shown below (see also Figure 4-4),

Save the contents of PSW to a temporary register.

Perform register bank switching.

Set |E to 0 and BRK to 0.

Save the PC contents and the PSW contents that were saved to a temporary register in the PC save
area and PSW save area in the new register bank,

Load the interrupt service routine's start address offset into PC from the vector PC area inthe register
bank.

© OO0

The register bank switching is now complete and the interrupt service routing is executed.

{c) Return from register bank switching
To return from a register bank switching intarrupt, first execute the FINT instruction (because use of the
register bank switching function is limited to interrupts subject to multiple interrupt control) and then
execute the RETRBI instruction. When the RETRBI instruction is executed, PC and PSW are restored
from the PC and PSW save areas in the register banks as shown in Figure 4-5. {Because they are not
restored by the RET! instruction, they normally cannot be returned to the main routine.)
The register bank switching function can be used only for ane interrupt in an interrupt group that is
specifiad the same priority level {see section 4.8).
When register bank switching is performed for several interrupt response modes within aninterrupt group
specifiad the same priority level, all must be switched to the same register bank.

CHAPTER 4 INTERRUPT FUNCTIONS

Figure 4-4. Register Bank Switching Sequence

New register bank for

Qld register bank interrupt servicing
AW AW
cw cw
Dw Dw
BW BW
SP SP
BP BP

X IX
i Iy
DS - D51
PS PS
Ss 8s
Dso Dso
PC save - PC save
PSW save — PSW save
Vactor PC ® Vector PC
Reserved Reserved
v
PC @
PSW @ = Temporary register -—

(2) Register bank switching
@ IE=0,BRK=0

CHAPTER 4 INTERRUPT FUNCTIONS

Figure 4-5. Register Bank Return Sequence

New register bank for

Qi register bank interrupt servicing
AW AW
CW cw
DW Dw
BW BW
Sp SP
BP BP

X 1%
Iy Y
D31 D51
PS PS
S8 8S
Ds0 Dso
PC save] PC save
@
PSW save — PSW save
Vector PC Vector PC
PcC
Reserved Reserved
)

CHAPTER 4 INTERRUPT FUNCTIONS

{2)

(3}

Ragister bank switching by software (BRKCS instruction}

The BRKCS instruction can be executed to perform register bank switching. The BRKCS instruction can aiso
be used as a high-speed subroutine call.

The number of the register bank to be switched to is specified in the low-order three bits of the 16-bit register
described in the operand. Next, the PC contents and PSW contents are saved in the PC save area and PSW
save area in the new register bank. Then the vector PC that was previously stored in the register bank is
lpaded into the PC for a branch,

(a} Settings
To execute the BRKCS instruction, the PS and vector PC in the register bank to he selected must be
previously initialized. Initialize SS and SP either before or after switching. If the MOVSPA or MOVSPB
instruction is executed for initialization, the value before switching is setin 5SS and 5P in the new register
bank, and the stack can be used continuously since before register bank switching,
Execute the RETRBI instruction to return from the new register bank. In this case, it is not necessary
to use the FINT instruction.

ib) Switching and restore saquence
The register bank switching and restore sequence is the same as for register bank switching when an
interrupt request ocours. Mowevaer, the FINT instruction does not have to be exscuted for restoring.
Restore by executing only the RETRBI instruction.

Register bank switching by software (TSKSW instruction}

The TSKSW instruction can be executed to perform register bank switching. The TSKSW instruction is used
for high-speed task switching.

During execution of the TSKSW instruction, the PC contents and PSW contents are first saved in the PC save
area and PSW save area in the current register bank (the register bank prior to switching). Next, the number
of the register bank to be switched to is specified in the low-order three bits of the 16-hit register described
in the operand. Then the PC save area contents that were previously stored in the new register bank is loaded
into the PC for a branch,

{a} Settings
To execute the TSKSW instruction, the PS, PC save area, SS, SP, and PSW save area in the register bank
to be selected must be previously initialized, If the MOVSPB instruction is executed to initialize SS and
SP, the value before switching is set in SS and SP, and the stack can be continuously used.

(b} Switching sequence
The register bank switching sequence is executed as shown below (see also Figure 4-8).

(@) Save PC and PSW in the PC save area and PSW save area in the current register bank {pefore
switching}.

@ Perform register bank switching.

@ Load the value in the PSW save area in the new register bank into the PSW and the value in the PC
save area into the PC for a branch.

77

CHAPTER 4 INTERRUPT FUNCTIONS

78

Figure 4-6. Register Bank Switching Sequence by Executing TSKSW Instruction

Old register bank New register bank
AW AW
cw cw
bw Dw
BW BW
SP SP
BP 8P
X IX
Y hé
Ds1 Ds1
PS PS
55 85
Dso Dso
PC save PC save
r— PSW save PSW save
Vector PC Vector PC
@
(“‘\ Reserved — Reserved
™ N
PC
PSW

@ Register bank switching

CHAPTER 4 INTERRUPT FUNCTIONS

4.5.3 Macro service function

The macro service function transfers data in byte or word units between the special function register area and
external memory space when an interrupt request occurs. This function enables simpie processing such as simple
data transfer without software interrupt servicing and can reduce interrupt servicing overhead {operations such as
register saving, initialization, and restore). Processing performed by the macro service function need not be
considered by software. Data that is conventionally processed by software in byte units can be processed as one
unit of data, thereby enabling efficient programming.

Unlike other interrupt response mades, if the IMK bit {interrupt mask bit) of the interrupt control register provided
for each interrupt source is reset and if the MS/INT bit {macro service enable bit) is set, the macro service function
serves regardiess of the El or DI state {see section 4.8), However, control based on the interrupt priority levels is
effective.

When macro service has been executed as many times as specified in the macro service counter (MSC), or when
the SFRP value matches the transferred data, the MS/INT bit is reset and a macro service completion interrupt is
genarated. This macro service completion interrupt is held pending in the DI state.

78

CHAPTER 4 INTERRUPT FUNCTIONS

Macro
service

Register
bank
imerrupt

Vectored
irmerrupt

PO

80

Figure 4-7. Interrupt Servicing Efficiency Using Macro Service

Execuﬁun\ Execution of macro service
of program /

Execution

of program

{microprogram) (resume)

I

Interrupt
ceeurs

Real interrupt
sarvicing time

Exmcuticn
of program
[resume)

Executicn of interrupt
senvicing instruction

Imterrupt

cocurs

"} Rmal intarrupt servicing timef .
™1 Userinterrupt service routne .

Exacttion
of proqram)(@

Execution of interrupt
servicing instruction

° A

Exactition

of program

{resurne)

!

Real interrupt
interrupt sarvicing time
oceurs : User interrupt service routine execution time
Total interrupt servicing time {period when program is suspended)
Program stop

Save PC and PSW 1o a register file, then read register number from vector table for a branch.
Execute RETRBI instruction. Restore PC and PSW from register file for a branch.

Save PC, PS, and PSW on a stack. Read PC and PS from vector table for a branch.

Execute RETI instruction. Restore PC, PS, and PSW from stack for a branch.

CHAPTER 4 INTERRUPT FUNCTIONS

The macro service function contains the following twa operation moedes.

(1} Normal mode
Whenever an interrupt request occurs, one-byte or one-word data is transferred as many times as specified
in the macro service counter (MSC).
Figure 4-8 shows the operation flow in normal mode.

Figure 4-8. Normal Mode Operation Flow

‘ Nommal mode)

¥
Transfer data between
special function register
specified in SFRP and
memary specified in
MSS and MSP

!

increment MSP by
one or two (+1/+2)

:

Decrement MSC by one
=1
YES
MSC=0 l
NO J—
MS/INT =0
Clear IF
Interrupt
reguest ccours
End

Remark See section 4.5.4 for SFRP, MSS, MSP, and MSC.
See section 4.8 for MS/INT.

81

CHAPTER 4 INTERRUPT FUNCTIONS

An example of serial interface transmission is shown below.

TxD pin ~—————— Serial register

Transmit data buffer

{extarnal memory}
Transmit comptetion
interrupt
® __________________
xB Transfer data
(Transmit count)
MSC @
MSC=0 + MsSP
20-bit memory addrass

N

' Macro service comgletion interrupt

OCCUrs.

MSP is incramentad,

®e6e o

Figure 4-9. Example of Serial Interface Transmission

Transmit completion interrupt {INTST)
= /1/

MSC (initial value)
F Count for data transmission between
these memories

MSS : MSP

The TxB register contents are transferred to the saerial register, and then a transmit completion interrupt
Data is transferred to TxB from the address indicated by "MSS:MSP",

MSC is decremented. When MSC is 0, a macro service completion interrupt occurs.

CHAPTER 4 INTERRUPT FUNCTIONS

(2} Character search mode
Whensver an interrupi request occurs, one-byte data is transferred the number of times specifiedin the macro

service counter (MSC) or until the transferred data matches the 8-bit data previously specified as the SCHR

character data.
Figure 4-10 shows the operation flow in character search mode.

Figure 4-10. Character Search Mode Operation Flow

Character
ssarch mode

Transfer data betwaen
special function register
specified in SFRP and
memory specified in
MSS and MSP

!

increment MSP by one
(+1)

!

Decrement MSC by one
=1

is the
transfared data
the samae as
SCHR?

YES

MS/INT = 0
Clear IF
interrupt
request occurs
End

Remark See section 4.5.4 for SFRP, MSS, MSP, MSC, and SCHR.
See section 4.8 for MS/INT.

CHAPTER 4 INTERRUPT FUNCTIONS

acro

PO

84

An example of serial interface reception (with and code} is shown below.

Figure 4-11. Example of Serial Interface Reception

R pin Serial register Receive data buffer
T {external memary}
Receive completion
interrupt
3 ————
RxB Transfer data
Compare
MSC @ SCHR
{Cormparison data)
MSC = 0 or AxB = SCHR
MSS
// + MSP
20-bit memory address

service completion intersupt

MSP is incremented.

Recaive completion interrupt (INTSR)
MSC {initial value}

r Count for data reception between
these rmemories

®

MSS 1 MSP

The serial register contents are transferred to the RxB register, and then areceive completion interrupt occurs.
The contents of RxB are transferred to the address indicated by "MSS:MSP".

MSC is decremented. When MSC is 0 or whan RxB = SCHR, a macro service completion interrupt occurs.

Macro service functions are controlled by the macro service control register provided for each interrupt source
subject to macro servicing and by the macro service channsl specified in the macro service contro! register,

(3} Macro service completion interrupt

When MSC is 0 or when the transfer data matches the comparison data (during character ssarch mode only),
only the MS/TNT bit is reset 1o 0 in the interrupt control register and the IF bit is not reset to 0. As a result,
when in the El state, an interrupt specified by the ENCS bit occurs after macro service completion. When
in the DI state, this intarrupt is held pending after macro service completion.

CHAPTER 4 INTERRUPT FUNCTIONS

4.5.4 Macro service control register
The macro service control register is an eight-bit register that controls the macro service function. The format
of this register is shown beiow, followed by explanations of each bit function,

7 & 5 4 3 2 1 0
MSM2 Msmm.nsmo oiR | o |cHz | crr | cHo

- Macro service channe! specification bits
A vaiue from 0 to 7 can be specified.
Data transfer direction specification bit

When this bit is set to 0, data is transferred from memory to the special function register. When set to 1, data
is transferred from the special function register to memaory.

MSMD | - Macro service mode specification bits

The aperaticn mode (normal or character search) and the number of transfer data bits (8 or 16} for narmal mode
are specified by settingIMSMOlto]MSM2ibits in a certain combination.

MSM2 § MSM1 | MSMO Operation mode
g 0 0 Normal mode (8-bit transfer)
0 0 1 Normal mode (16-bit transfer)
1 0 0 Character search mode (B-bit transfer)
Other combinations Setting Prohibited

The macro service control register is contained in the special function register area. The register can be written/
read by making an 8-bit or 16-bit memory access.

The macro service control register is provided for each interrupt source subject to macro servicing. The interrupt
sources subject to macro servicing are timer interrupts {INTTUG to INTTUZ2), external interrupts {INTPO to INTP2),
and serial reception and transmission interrupts (INTSRQ, INTSR1, INTSTO, and INTST1), See the corresponding
subject headings for the locations of the macro service control registers for sach interrupt source.

CHAPTER 4 INTERRUPT FUNCTIONS

Figure 4-12. Macro Service Control Register

7 5 5 4 3 2 1 0 When reset R/W
MSMZI MSM1iMSMO| DIR g CH2 | CH1 | CHO Uindefinad RW
I | E l

Macro service channel specification

Sat value for CHO to CH2 Macro service channels

07 Macro service channels from
Oto7

Data transfer direction specification

¢ Fram mamory to spacial functian register

1 From spacial function register to memory

Macro service mode specification

MSM2 |MEM1 [MSMO Operation mode
0 0 0 | Normal mode (B-bit transfer)
Q 0 1 Normal made (16-bit transfar}
1 0 0 | Character search mode {8-bit transfer}
QOther combinations Setting prehibitad

The macro service channels are specified to on-chip RAM addresses xx<EQOH to xxE3FH (ox is the |DB register
value), as shown in Figure 4-13. The data destination, data source, number of transfer bytes, and comparison
character in the macro service mode are set in the macro service channel. Up to eight macro service channels can
be used.

Figure 4-13. Macro Service Channel Configuration

*xxEQCH
EO7H
EO8H
EQFH

E10H 2 SFRP MSC

E17H
R SCHR
E18H eserved CH

E1FH MSP
EZ0M MSS
E27H
E28H
E2FH
E30H
E37H
E38H
»xE3FH

Macro service channel 0

86

CHAPTER 4 INTERRUPT FUNCTIONS

MSC {(+0H} : Macro service transfer count

SFRP {(+1M} : Special functionregister address offsetvalue, xxFOOH + SFRP {xxis the [DB value} is the special
function register address.

SCHR {+2H) : &-bit data for comparisen in character search mode.

MSP (+4H} : Offset value of memory addrass for data transfer when macro service is executed.

MSS (+6H] : Segment value of memory address for data transfer when macro service is executed. The
memery agddress for data transfer is MSS x 16 + MSP.

The value in parentheses is the offset from the start address of the macro service channel,

The macro service memory address for data transfer is indicated by the segment specified in MSS and the offset
value from the segment specified in MSP.
15 0 Four bits
MSS 0

Four bits
—"— 15 0

+} ¢ MSP

20-bit memmory address

Whenever 8-bit or 16-bit data is transferred, the MSC in the macro servige channel is decremented by one and
the MSP is incremented by one or two. After this, the interrupt request flag is cleared. If 0 is written to MSC, data
is transferred 256 times.

Caution Because the register banks and macro service channals are assigned to the same on-chip RAM,
do not use register banks when using the macro service function.

87

CHAPTER 4 INTERRUPT FUNCTIONS

4.6 NMI (Non-Maskable Interrupt)

WM is the highest-priarity interrupt that cannot be disabled (masked). This interrupt is edge-detected. The edge
direction can be selected by setting the INTM register (a special function register) bit 0 {ESNM bit} to 1 or 0. If the
ESNMI bit is 0, an NMI interrupt occurs when the falling edge is detected and if this bit is 1, an NM| interrupt occurs
when the rising edge is detectad. Only a vector response can be mada to the interrupt, and the vecter type is fixed
to 2. The NMI input is also used for the P10 pin, and the level can be tested by reading P10. When NMI is

acknowledged, IE is setto 0 and interrupts other than NMIi are disabled. {However, a macro service interrupt response
is acknowledged.}

NM! requests are acknowledged during NMI servicing.

CHAPTER 4 INTERRUPT FUNCTIONS

4.7 INT {interrupt)

INT is a maskable interrupt. This interrupt is detected by its level {(active high). INT is not subject to multiple
servicing control by the interrupt controller; and is always acknowledged if interrupts are enabled (IE = 1). However,
when a number of interrupts occur at once, the lowest priority level is assigned. Only a vector response can be made
to INT, and the vector type is fetched from the data bus during an interrupt acknowledge cycle. The in-
terrupt acknowledge cycle can be confirmed by INTAK output. The INT pinis also used for P14 and POLL, it is selected
by setting bit 4 of the port 1 mode control register (PMC1), a special function register. Thus, when the INT function
is not selected. an INT interrupt does not occur even if interrupts are enabled {IE = 1). INTAK is also used for P13
and INTPZ, and the function is selected by setting bit 3 of PCM1 {if the INTAK function is not selected, external
notification of interrupt acknowledge cycle generation is not possible). Figure 4-14 shows the timing of the interrupt
acknowledge cycle.

Hold the INT signal high at least untit the first INTAK signal is output.

External interrupt inputs can be expanded to a maximum of 64 by connecting an external yPD71059 or an interrupt
controller equivalent to the uPD71053,

Whan an INT interrupt is acknowledged, interrupts are disabled (IE = 0).

Figure 4-14, INT interrupt Acknowledge Timing

CLKOUT
4
[{
=
INT
it
—_ —N o
INTAK
Input data
Hi-Z Hi-Z
D7D0 vmesuvemcncewnens ---&ﬁ-----—----! ---------------------- -< Vector type >---1----
i
—_— L)
MREQ, IQOSTB

839

CHAPTER 4 INTERRUPT FUNCTIONS

4.8 interrupt Request Control Register

The interrupt request control register is an 8-bit register that controls interrupts other than INT and NMI,
The interrupt request control register format is shown below, followed by a description of each bit function.

7 € 5 4 3 2 1 0
iF IMK |MSANT| ENCS | O PR2 | PR1 | PRO

to : Interrupt group priority level specification bits
One leval from 0 to 7 can be specified. The priority level can be specified oniy in the interrupt request control
register for the interrupt having the highest priority level in the group; if the priority level is specified in any
other interrupt request control register, it becomes insignificant (7 is always read). The priority levels in other
interrupt request control registers conform to the priority level in the interrupt request control register for the
interrupt having the highest priority level in the group.
The priority level also specifies the new register bank when the register bank switching function is executed.

: Bit specifying whether or not the register bank switching function is used
When this bit is set to 1, the register bank switching function is used; when set to 0, the vectored interrupt
function is used.

: Interrupt response mode selection bit
When this bit is set 1o 1, the macro service function is used; when set to 0, the vectored interrupt or register
bank switching function is used.

: Interrupt mask bit
When this bit is set 10 1, the corresponding interrupt is masked; when set to 0, it is not masked.

: Bit indicating the corresponding intermupt request
Whan this bit is set ¢ 1, it indicates that the corresponding interrupt request exists; when set to 0, it indicates
that the corresponding interrupt request does not exist. When the corresponding interrupt request occurs,
the bitis setto 1. When the interruptis acknowledged or an instruction such as BTCLR (an additional instruction
from the uPD70108/70116) is executed, the bit is reset to 0. This bit is set to 1 whenever an interrupt request
oceurs, even when interrupts have been masked via the IMK bit.

Caution If the IF bit is set to D by a program during interrupt servicing, interrupts wil! no longer occur.
The interrupt request control register is contained in the special function register area. This register can be written/
read by making an 8-bit or 1-bit memory access.

The interrupt request control register is provided for each interrupt source except INT or NMI. See the cor-
responding subject headings for the locations of the interrupt requsst control registers for each interrupt source.

90

CHAPTER 4 INTERRUPT FUNCTIONS

Figure 4-15. interrupt Request Control Register

7 <] 5 4 3 2 1 When reset R/W
fF | IMK |MsiNT|ENCS| 0 | PR2 | PRI 47H RW
!
Interrupt group prierity lavel specification
Set value for PRO to PR2 Interrupt group priority level
0-7 Priority level from Oto 7
Register bank switching function used/not used
1 Register bank switching function is used
0 Register bank switching function is not used
Interrupt response mode selection
0 | Vectored intertupt or register bank switching function
1 Macro service function
Interrupt mask specification
{Register) {Bit name) (Register) {Bit name) 0 | Not masked
EXIC0-2 : EXMKO-2 TMICO2 : TMMKG-2 | | Masked
SEICQ, 1 : SEMKQ, 1 DICO, 1 : DMKQ, 1
SRICO, 1 : SRMKD, 1 TBIC 1 TBMK
STICO, 1 : STMKD, 1 Interrupt request response indication
0 No interrupt request
EXiCO-z :EXFOZ TMICO-2 : TMFO-2 1 Interrupt regquest
SEICD, 1 : SEF0, 1 DICO, 1 :DFO, ¢
SRICO, 1 :SRFO, 1 TBIC . TBF
STICO, 1 : STFO, 1

91

CHAPTER 4 INTERRUPT FUNCTIONS

4.9 Interrupt Source Register
This register is an B-bit register that stores the interrupt type for identifying the interrupt source of an interrupt
received. The structure of the IRQS register is shown in Figure 4-18.

The higher three bits are fixed.

Figure 4-16. IRQS

7 g 5 4 3 2 1 D When reset RAW
5 0 0 TYPE | TYPE | TYPE | TYPE | TYPE Undefined R
4 3 2 1 0

I | | l t | 1
Intermupt TYPE | TYPE | TYPE | TYPE | TYPE Interrupt
ype 4 3 7 1 0 source
12(0CHY| O 1 1 0 0 |INTSERQ
1300DH; O] 1 v INTSRO
T4{0EH) 0 1 1 1 o] INTSTO
18{10H) | 1 0 0 0 0 [INTSER1
t7tH 1 o 0 0 1 INTSR1
18(12H) 1 0 0 i 0 INTST1
20014Hy | 1 0 1 0 0 INTDO
21(15H} 1 Q 1 o 1 INTD1
24(184) 1 1] o 0 INTPO
25(19H) 1 1 0 0 1 INTP1
2600AH) | 1 1 o 1 o INTPZ
28(1CHH| 1 1 1 0 o | INTTUD
291DH) | 1 1 1 0 1 INTTUS
30(1EHH | 1 1 } 1 0 |INTTUZ
3100FH) 1 1 1 1 1 INTTB

The interrupt type is specified according to the interrupt source (excluding NMI and INT) subject to pricrity level
control, and has the same value as the vector number,

When an interrupt request texcluding a response with macro service} from an interrupt source having the interrupt
type (see Figure 4-16.) is received, the interrupt type stored in the IRQS register is updated, and its vaiue is maintained
until the next interrupt request is received. It is not changed by interrupts (NMI, INT, ete.) other than the above.

Therefore, if an interrupt request source is to be identified by reading the JRQS register jn the interrupt processing
using registar bank switching, read this register before the next interrupt request can be received by El instruction,
etc,

The IRQS register can be read by B-bit manipuiation memory access.

92

CHAPTER 4 INTERRUPT FUNCTIONS

Next, an example of interrupt servicing by register bank switching using the IRQS is described.

«Main routine>

<Interrupt service routine by the register bank 3>

INTSR) ——=
{level 3}

@

=12 (OCH) = 13 (0DH) = 14 (OEH}

INTSERQ INTSRO INTSTO
service routing service routine service rol.mne

(‘D INTSRO {specified priority level 3} occurs in the interrupt enable state (El), and interrupt servicing {register
bank 3 used) starts by register bank switching.

The IRQS is read in the DI state immediately after the servicing starts. (The [RQS should be read in the Di
state in order to prevent the IRQS valua from being changed by other interrupts).

@ The servicing routine of INTSRO is selected according to the read value (13 for this case) and is executed.

®

83

CHAPTER 4 INTERRUPT FUNCTIONS

4.10 Interrupt Priority Register (ISPR)

The interrupt priority register (ISPR) is an B-bit register that indicates the multiple interrupt servicing state under
the interrupt controller’s priority level control. The ISPR register cannot be written to.

Figure 4-17. ISPR

) 6 5 4 3 2 1 0 Whenreset RW

Prierity | Priority | Priority | Priority { Priority | Priority | Priority | Priority 00K R
level | level | leval | level | level | level | level | level

7 | 6 | 5 | 43|21]c¢
| ! I I ? | l |

Interrupt servicing state at each priority ievel

0 interrupt request is not acknowledged

1 Interrupt request is acknowledged

Bits 0 to 7 correspond to priority lavels G to 7. When interrupt request having one priority level is acknowledged,
the bit corresponding to the priority fevel is set to 1.

The least significant bit (corresponding to the highest priority ievel) among the bits setto 1 is reset to 0 by executing
one FINT instruction.

When one of the bits 0 to 7 is set to 1, any interrupt request having a priority level lower than the priority level
corresponding to the bit is not acknowledged and is held pending.

Any interrupt request having a priority level higher than the priority level corresponding to this bit is acknowledged,
the current interrupt is stopped and heid pending.

The ISPR register is contained in the special function register area and can he read by making an 8-bit memory
access.

When RESET is asserted, the ISPR contents are initialized to 00H.

Cautions 1. Unless an FINT instruction is sxecuted, the corresponding bit will not be reset to 0 when
the servicing ends and, consequently, interrupts with lower priority {evels cannot be

acknowledged.
2. If an FINT instruction is used without being immediately fallowed by an RETI or RETRBI
instruction, priority level control cannot be made. In such cases, contro) must come from

the application.

94

CHAPTER 4 INTERRUPT FUNCTIONS

Figure 4-18. ISPR States

{Main routine}
El
oriz - <Priority level 2 servicing>
TEl —ISPR = 000001008
prid -
FINT ==I5PR = 00000000B

’ «<Priority level 4 servicing>

El -~ |SPR = 000100008

FINT =~I3PR = Q0000000B

RET!

CHAPTER 4 INTERRUPT FUNCTIONS

4.11 External Interrupts

There are five sources of external interrupt requests. INT is level-detected and external interrupts other than INT
{NMI and INTPO to INTP2) are edge-detected. For each of the exiernal interrupts other than INT that are edge-
detected, the valid edge can be specified in the external interrupt mode register (INTM), a special function register.

4.11.1 External intarrupt mode register (INTM)

The external interrupt mode register (INTM) is an 8-bit register that specifies the valid edge for external interrupt
requests. The edge-detscted interrupts are NM! and INTPQ to INTP2. The valid edges for these interrupts are
specified in the INTM register.

Figure 4-19 shows the INTM register format and bit functions.

Figure 4-19. INTM

7 [5 4 3 . 1 Q When reset R
o [Es2| 0 [EST| o |ESO| o0 |ESNM 00H RAW

Valid edge specification for NMI input
0 | Faling edge
1 Rising edge

Velid edge specification for INTPQ input

0 Falling edge

1 Rising edge

Valid adge specification for INTP1 input

¢ | Faliing edge

1 Rising edge

Valid edge specification for INTPZ input

0 | Faliing edge

1 Rising edge

The INTM register is contained in the special function register area. It can be written/read by making an 8-bit or
T-bit memory access.
When RESET is asserted, the INTM register contents are initialized to 00H.

96

CHAPTER 4 INTERRUPT FUNCTIONS

4.11,2 External interrupt request control registers (EXICQ to EXIC2)

The EXICn registers (n = 0 to 2} are 8-bit registers that control interrupt requests (EXFO to EXF2) cecurring from
the three external interrupt request pins (INTPO to INTF2).

These three interrupt requests make up one group as external interrupt requests, and the group's priority level
is programmable, Within the group, the priority levels are fixed as follows.

EXFC >EXF1 > EXF2

Figure 4-20. EXICO0, EXIC1, and EXIC2

7 & 5 4 3 2 1 Q
EXICO | EXFO |EXMKO MS.-’!N_T}ENCSt ¢ !PRZ PR1 | PRO

EXIC1 | EXF1 [EXMKI|MSANT| ENCS | © 1 1 1

EXIC2 | EXF2 |EXMK2|MSANT [BNCS | © 1 1 1

Caution Bits 2 to 0 of the EXIC1 and EXIC2 registers are fixed to 1.
The interrupt request priority ievels in the EXIC1 and EXIC2 ragisters conform to the settings
for bits PR2 to PRO in the EXICO registar.

See saction 4.8 Interrupt Request Control Register for the description of EXICn register's bits,

The EXICn register can be readiwritten by executing an 8-bit or 1-bit memory access. [n this case, ong wait cycle
is automatically inserted.

When RESET is asserted, the register contents are reset to 47H.

4.11.3 External interrupt macro service control registers (EMS0 to EMS2)

The EMSn registers (n = 0 to 2) are 8-bit registers that control macro services started when any of three interrupt
requests occur from external interrupt request pins (INTPO to INTP2).

The EMSD register controls the macro service started via the EXFO flag.

The EMS1 register controls the macro service started via the EXF1 flag and the EMS2 register controls the macro
service started via the EXF2 flag.

The EMSn register can be read/written by executing an 8-bit or 1-bit memory access. In this case, one wait cycle
is inserted.

Figure 4-21. EMSD, EMS1, and EMS2

7 6 5 4 3 2 1 0
MSM2Z MSM1|MSME| DIR 0 CHZ [CHY | CHO

See section 4.5.4 Macro service control register for description of the EMSn register’s bits.

97

CHAPTER 4 INTERRUPT FUNCTIONS

4.12 Software Interrupts

The pPD70325 and 70335 gach contain nine types of software interrupts (see Table 4-2). Six of the software
interrupts are compatible with the uPD70108 and 70116 (however, emulation mode interrupts are not available), The
other three interrupts are unique to the PD70325 and 70335.

The vectors of the interrupts are predefined.

Any interrupt other than the BRK interrupt {single step interrupt) is always acknowledged if the interrupt occurrence
condition becomes true {it takes precedence over hardware interrupts). The BRK flag interrupt occurs when BRK
= 1 regardless of the hardwaére or software. When the interrupt is acknowledged, the BRK is automatically reset,
and therefore the interrupt priority level is lower than other hardware and software interrupts, and another BRK flag
interrupt does not occur during the interrupt servicing.

Table 4-2. Software interrupts

Interrupt source Vector Priority level
DivU divide error 0
DIV divide error
CHKIND boundary over 5 1
BRKY 4
BRK 3 3
BRK imm8 32-255
BRK flag {singie step) 1 2
I/O instruction {IBRK flag) 19
FPO instruction 7 1
BRKCS instruction -

4.12.1 Genera! software interrupts

The execution sequence for acknowledging software interrupts other than /0 instruction interrupts or FPQO
instruction interrupts is the same as that of vectored interrupts. That is, address information for the next instruction
and the PSW are saved on a stack, |E and BRK are both set to 0, and the vector contents are loaded into the PS
and PC,

The software interrupts are described below.

(1} DIVU and DIV divide errors
A software interrupt accurs whenever the quatient overflows white executing & divide instruction.

(2) CHKIND boundary over
When the CHKIND instruction is executed to check whether or not the index value exceeds the predefined
array boundaries, a scftware interrupt oceurs if it is determined that the index value exceeds the boundaries.

{3) BRKV
A software interrupt occurs whern the overflow flag (V) is set during execution of the BRKV instruction.

g8

CHAPTER 4 INTERRUPT FUNCTIONS

{4) BRK3
A software interrupt occurs when the BRK 3 instruction is executed.

{5} BRK imm8
A software interrupt ocours when the BRK imm8 instruction is executed.

{6) BRK flag (single step)
if BRK is set to 1, a software interrupt occurs whenever one instruction is executed. If arepeat prefix is added,
it does not ocour until the loop is exited.

4.12.2 {/O instruction interrupts

If an attempt is made to execute an I/Q instruction when {BRK = 0, an interrupt occurs. When the interrupt is
acknowledged, address information saved on a stack becomes the addraess whare the [f/Q instruction is placed, unlike
general software interrupts (see section 4.12.1). If a prefix is added to the /O instruction, the address information
becomes the address whare the prefixis placed. Other oparations are the same as general software interrupts. When
contral is returned from the IfO instruction interrupt, the PC value in the stack must be adjusted for a normal return.

If the address information saved on the stack is made the instruction’s starting address, the software can be used
to determine specifically which instruction was attempted when the interrupt occurred. This function enables easy
migration of programs formerly used with the ¢PD70108 and 70116.

Tha PSW contents immediately prior to the interrupt occurrence are saved on the stack, then |IE = BRK = © and
1BRK = 1 are set automatically. By setting IBRK = 1, any |/O instruction is exacuted as an ¥O instruction during
interrupt servicing. When control is returned from the interrupt, iBRK is automatically resst to 0.

Example 1. Without prafix

Address Instruction
: 0183H «SP
0183H IN AW, DW PS
: PSW
Stack
Example 2. With prefix
Address Instruction
01834 --S5P
0183H REP PS
O1B4H INM PSW
. Stack
Reference General software interrupt
Address Instruction
0184H --SP
0183H BRK 3 PS
: PSW
Stack.

CHAPTER 4 INTERRUPT FUNCTIONS

4.12.3 FPO instruction interrupt

Because the uPD70325 and 703365 differ from the pPD70108 and uPD70116 in their external bus structure, a
fioating-point math co-processor for the uPD70108 and 70116 cannot be connected. Therefore, an interrupt is
generated to emulate the operation of the FPO instruction when an attempt is made to execute the FPQ instruction
for the coprocessor. The PC value saved on the stack becornes the starting address of the FPO instruction emulated
by this interrupt (when a prefix is added, the starting address of the prefix), as is the case for /0 instruction interrupts
{see section 4.12,2 1/O instruction interrupts}). Accordingly, the FPO instruction can be decoded for emulation
by software. Whan control is returned from the FPO instruction interrupt, the PC value saved on the stack must
be adjusted as with |/O instruction interrupts.

100

CHAPTER 4 INTERRUPT FUNCTIONS

4.13 If Interrupt Requests cannot be Acknowledged
If interrupt requests cannot be acknowledged, check the following items.

» Confirm that the IF bit in the interrupt request control register is set to 1. If it has been reset to 0, check
whether or not it was replaced (written over) by software.

¢ Confirm that the interrupt request contrcl register's IMX bit is set to 1.

¢ Confirm that the ISPR register's bit having the highest priority ievel is set to 1.

= Confirm that the PSW's IE flag is in the DI state.

4.14 Timing at which an Interrupt cannot be Acknowledged
No interrupt can be acknowledged between each of the following instructions and the next instruction.

(i) sreg manipulating instructions
MOV sreg, reg16 ; MOV sreg, mem16 ; POP steg ; POP PSW ; MOVSPB
{iit Prefix instructions
PS:, S8, DS0;, DS1:, REPC, REPNC, REP, REPE, REPZ, REPNE, REPNZ, BUSLOCK
(i} El, RETI, DI
{iv) FINT

Each interrupt except INT that occurs at a timing where no interrupt can be acknowledged will be acknowledged
if it can be acknowledged after termination of the next instruction’s execution.

4.15 Interrupt Servicing during Execution of Block Servicing instruction

An interrupt is acknowledged during execution of a block servicing {transfer, comparison, retrieval, or [/Q}
instruction.

The interrupt is acknowledged at the termination of one servicing instruction’s execution. Atthattime, the address
saved on the stack or the PC save areain the register bank automatically becomes the top of the instruction containing
the prefix. The incomplets block servicing can be resumed by re-executing from the prefix when returning from the
interrupt.

Theoretically, up to three types of prefixes including repeat prefixes can be added to the block servicing instruction.
The uPD70325 and 70335 enable the user to determine which type of block servicing instruction with prefix was
being executed when the interrupt was acknowledged, The PC value is automatically decremented and saved in
an area such as the stack according to the prefix addition state.

Example REP
MOVBK SS:5RC BLK, DES BLOCK

101

CHAPTER 4 INTERRUPT FUNCTIONS

4.16 How Interrupts are Acknowledged
(1) NMmI
¢ |s not masked by scftware.

o Takes precedence over all other interrupts.

<Main routine>

<INTDOQ sarvice routing>

@) INTDO
l <NM! service routine>
@ NMiinpuz ~
~—

RETI

@ FINT

RETI OR RETRBE}

<NMI sarvice routine>

@ "TSER | 7 “JE”

NMlinput —"

@ <INTSERD service routine>
|

FINT
N\ RETI R RETRBI

INTDO (specifiad priority level 2) occurs in the interrupt enable state (El} and INTDO servicing is started.
Interrupts are disabled (DI} during INTDO servicing. When NMI occurs, INTDO servicing is disablad and NMI
sarvicing is started.

When NM| servicing is completed, previously disabled INTDO servicing is resumed.

Wien INTSERO (specified priority level 4) and NMI occur at the same time, the NMI which takes precadence
over all other interrupts is acknowledged and NMI servicing is started.

When the NMI servicing is completed, the pending INTSERD is serviced.

@ 0 O

102

CHAPTER 4 INTERRUPT FUNCTIONS

{2) INT
o Is always acknowledged if El is set to 1 (interrupt enable state).
o Is specified the lowest priority level when multiple interrupts occur.
o Is not subject to the multiple interrupt servicing controller.

<Main routine>

<INT service routine>

Z) INTinput -'-1
El
| <INT sarvice routing>

]
s RET}

RETI
R

) INT input —»

@ INTinpuz —

iNT input i i
@ el ~ <INTTB service routine>

INTTB —]
® FINT
RETI

When INT accurs in the interrupt enable state {E), INT servicing is started.

When the INT is acknowledged, interrupts are automatically disabled (DI}, f another INT occurs, it is not
acknowledged.

Even when El is set to 1 {interrupt enable state) during INT servicing, multiple servicing of INT is parformed
if another INT occurs.

When INT and INTTB {specifiad priority level B} occur at the same time, the INT which has the lowest priority
level is not acknowledged, and INTTB servicing is started.

If INT is inactive after INTTB servicing is completed, the INT interrupt is not acknowiedged.

@ ® © 00

103

CHAPTER 4 INTERRUPT FUNCTIONS

{3) Interrupts subject to multipracessing control

o Multiple servicing is performing according to the priority levels.

«<Main routine»

Q @ @68 © 0

104

<INTTB service routine>
®|NTSHD —

@ FINT
RETI
D INTTE —

@| <INTSRO service routine>

1
Et <INTPZ senvce routine>

B INTST1—>|]
® INTP2 ~—~

FINT

. RETI OR RETRBI
FINT
RETI OR RETRB!

<INTST1 service routings

FINT
RETI OR RETRBI

INTTB (specified priority level 8) ocours in the interrupt enable state (El) and INTTB servicing is started.
When the INTTB is acknowledged, interrupts are disabled (DI). Although INTSRQ (specified priority tevel 4)
ocecurs and is higher than the INTTB pricrity level, it is not acknowledged,

The FINT instruction must be executed for interrupts subject to priority level control when returning controt
from the interrupt.

When INTTB servicing is completed and interrupts are enabled (El}, pending INTSRO servicing is started.
INTST1 (specified priority level 5) occurs in the interrupt enable state (El). Since INTSRO interrupt servicing
is being performed and INTST1 has a lower pricrity level than INTSRO, the INTST? is not acknowledged.
INTP2 (specified priority level 3) occurs. Because it has a higher priority level than INTSRO, INTP2Z is
acknowledged and INTP2 servicing is started.

INTP2 servicing is completed. When pending INTSRC servicingis also completed and a return is made, INTST1
is acknowladged.

CHAPTER 4 INTERRUPT FUNCTIONS

{4) Macro service interrupt
o Is acknowledged regardiess of the interrupt enable (El} or disable (DI} state.

o Multiple servicing is performed according to the priority levels as with the interrupts subject to multiple
servicing control.

<Main routine>

<INTPO service routine>

: <Macro service (level 2) servicings
(@) Macro service 9

{level 2) ;:l

El
Macro service
{level 5)

)

Macra service
{level 3]

-

FINT
RETI OR RETRBEI
INTPG —

<Macro service {leval 3} servicing>
]

® l <Macro sarvice (level) senicing>
]

(D When a macro service interrupt (specified priority level 2} occurs during servicing of INTPG {specified priority
level 3}, macro service servicing is performed even though interrupts are disabled {DI).

@ Macro service interrupts {specified priority levels 5 and 3} occur during servicing of INTPO piaced in the
interrupt enable state [El). The macro service interrupt priority levels are lower than the INTPQ priority level,
and therefore interrupts are held pending.

@ When the INTPO servicing is complsted, the pending macro service interrupts are acknowledged according
to their priority levels.

105

CHAPTER 4 INTERRUPT FUNCTIONS

{5} Macro service interrupt priority levels for other interrupts
o A macro service interrupt is also acknowledged during NMI servicing.

<Main routine>

El
<NM| sarvice routine>
. <Macro service (levei £) sarvicing>
() Macro service =
{lavel)
@ INTDO -
INT input -
NM! input — F”fT |
@ <INTD0 service routine>
|
FINT
® \ RETI OR RETRBI
j
\ <INT service routing>
I
HIIITI

Even if interrupts are disabled (DI} during NM| servicing, macro service servicing is performed when a macro
service interrupt occurs.

When interrupts are disabled {D1} during NM! servicing, even if aninterrupt subject to multiple servicing control
{INTDO} or INT oecurs, it is not acknowledged.

When the NMI servicing is completed, the pending INTDO is acknowledged.

If INT is active at the completion of INTDQ servicing, INT is acknowledged.

®0 ©® O

106

CHAPTER 4 INTERRUPT FUNCTIONS

{6} Multiple interrupt servicing
o INT and other interrupts subject to multiple servicing contrel, and macro service interrupts

«<Main routine>

El
<INT service routine>
(D) INTSTY -
@ a,huinmsewice - <Macro service {lsve! 4} servicing>
evel -]
El
3 L <INTST1 service routine>
)
El
<INT service rautine>
INT input ~— @) (NT input = I— }
R RETH
FINT
RET! OR RETRBI
RET

is not acknowledged,

When El is set to 1 (interrupt enable state), pending INTST1 servicing is started.
If interrupts are enabled (El) during INTST1 servicing, INT servicing is started when INT occurs.

®e ©

Because INT is acknowledged and interrupts are disabled (D1}, INTST1 {specified priority level 5} occurs, but

When a macro service interrupt {specified priority level 4} occurs, macre service servicing is performed.

107

CHAPTER 4 INTERRUPT FUNCTIONS

{7) Priority levels of external interrupts
o If an external interrupt for INTPO or INTP1 input occurs during servicing of an INT interrupt service routine,
the interrupt is acknowledged if the interrupt flag is in the El state.

<Main routine»

E1| <INT service routine>

(D INTPO OR INTP1 =

INT input — B
<INTPQ OR INTP1 service routing>
@
FINT
RETI

RETI

(D Because the INT is acknowledged and the interrupt disable state (D¥) is in effect, if interrupt requests for INTPO
or INTP1 oceur they are not acknowiedged,
@ Whenthe interrupt flag is in the enable state (El), servicing is started for the pending INTPO or INTP1 interrupt.

o If an INT input occurs during execution of an INTPD or INTP1 interrupt, the INT input is acknowledged at any
time when the interrupt flag is in the El state.

«<Main routine»>

<INTPO OR INTP1 service routine>

INTPO OR INTPY —=

<INT service routine>

INT input -

108

CHAPTER 4 INTERRUPT FUNCTIONS

4.17 Hardware Interrupt Response Time

4.17.1 V25+'s interrupt response time (humber of system clock cycles)

Internal interrupt request occurs External interTupt reguest occurs
{INTTUn, INTSTn, INTSEn, INTSERR, INTDn, INTTB) UNTPR}
Q clock cycles T T 6 clock cyeles

Y

Set intarrupt request flag {IF)

11 to {27 + N) clock cycles

Start interrupt service microprogram (acknowledge cycie)

| |

(Vectored intarrupt) [Register bank switching) {Macro service/normal {Macro service/character
made) search moda)

j (58 + 6y + 4z} clock cycles 27 clock cycles

Set vactor address in PC Set VPC address in PC
{7 + 2m) clock cycles {7 + 2m} clock cycles How Nete

Y Y

Exacuts first instruction Exacute first instruction Start execution of Staft exacution of
of interrupt of imerupt next instruction next instruction
service routine service routine {containing fetch cycle) {containing fetch cycle)

Note Macro service transfer processing time {number of system clock cycles)

N : Remaining number of execution clock cycles for the instruction being executed by the CPU at this time

v : Number of wait cycles for memory whan PC, PS, and PSW are saved on a stack

z Number of wait cycles for memory when vector PC or vector PS is read

m : Number of wait cycles for memory when the first instruction of interrupt service routine is fetched (when
two bytes are fetched, instruction execution is started}

Caution Refresh cycle, hoid raquest, DMA request, otiar intarrupt requests, etc., are not considerad.

109

CHAPTER 4 INTERRUPT FUNCTIONS

Normal mode {unit: clock cycles)

Byte transfer

Word transfer

On-chip RAM
access enahted

On-chip RAM
access disabled

On-chip RAM
access enablad

On-chip RAM
access disabled

Memory to SFR 24+t 19+1 26+2t 21+2t
SFR to memory 2241 204 2242t 22+2t
Character search mode (unit: clock cycles)
Byte transfer
On-chip RAM QOn-chip RAM
access enabled | access disabled
Memory to SFR 27+t 274t
SFR to memory 37+t 4t

110

t: Number of wait cycles for memory used for data transfer

CHAPTER 4 INTERRUPT FUNCTIONS

4.17.2 V25+'s NMI response time {number of system clock cycles)

NMI input

{18 + N) clock cycles

Stant NMI service microprogram {acknowledge cycle)

{58 + 6y + 42) clock cycles

y

Set vector addrass in PC

(7 + 2m) clock cyctes

Execute first instruction of NML service routine

Remaining number of exacution clock cycles for the instruction being executed by the CPU at this time
Number of wait cycles for memory when PC, PS, and PSW are saved on a stack

Number of wait cycles for memory when vector PC or vector PS is read

Number of wait cycles for memory when the first instruction of interrupt service routine is fetched twhen
two bytes are fetched, instruction execution is started)

3N~<z

M

CHAPTER 4 INTERRUPT FUNCTIONS

4.171.3 V25+’s INT response time (number of system clock cycles}

INT input

(B + N) clock cycles

Start INT service microprogram (acknowledge cycie)

(62 + By) clock cycles

Set vector address in PC

(7 + 2m) clock cycles

Execute first instruction of INT service routine

Remaining number of execution clock cycles for the instruction being executed by the CPU at this time
Number of wait cycles for memory when PC, PS, and PSW are saved on a stack

Number of wait cycles for memory when vector PC or vector PS is read

Number of wait cycles for memory when the first instruction of interrupt service routine is fetched {when
two bytes are fetched, instruction execution is started)

g ~N=<=z

12

CHAPTER 4 INTERRUPT FUNCTIONS

Normal mode {unit: clock cycies)

t: Number of wait cycles for memory used for data transfer

Byte transfer Word transfar
On~chip RAM Cn-chip RAM On-chip RAM On-chip RAM
access enabled | access disabled | access enabied | access disabled
Memary to SFR 2541 20+t 25+t 20+t
SFR to memory 224t 21+ 224¢ 2141
Character search mode {unit: clock cycles)
Byte transfer
On-chip RAM Cn-chip RAM
access enabled | access disabled
Mamory tc SFR 28+t 284t
SFR to memory 38+t 3641

13

CHAPTER 4 (INTERRUPT FUNCTIONS

4.17.4 V35+'s interrupt response time {number of system clock cycles}

internal interrupt request occurs

{INTTUn, INTSTn, INTSRn, INTSERn, INTDR, INTTBI

External interrupt request occurs

(INTPn}

0 clock cycies

& dlock cycles

Set interrupt request flag (IF)

11 to (27 + N} clock cycles

Start interrupt service microprogram {acknowledgs cycle)

|

Vectored interrupt) (Register bank switching} {Macre service/normal (Macro service/character
mode) search mode}
[{53 + 3y + 22) clock cycles 27 clock cycles
Set vactor address in PC Set VPC address in PC
;
l {7 + m) clock cycles {7 + m) clock cycles Nets Nets
¥ 1
Execute first instrugtion Execute first instruction Start execution of Start execution of
of interrupt of interrupt next instruction next instruction
service routine service routine {containing fetch cycle} {containing fetch cycle)

Note Macro service transfer processing time (number of system clock cycles)

BN"CZ

two bytes are fetched, instruction execution is started)

Caution Refresh cycle, hold request, DMA request, other interrupt requests, stc., are not considered.

114

Ramaining number of execution clock cycles for the instruction being executed by the CPU at this time
Number of wait cycles for memory when PC, PS, and PSW are saved on a stack
Numbher of wait cycies for memory when vector PC or vector PS is read

Number of wait cycles for memory when the first instruction of interrupt service routine is fetched (when

CHAPTER 4 INTERRUPT FUNCTIONS

4.11.5 V3a5+'s NMI response time (number of system clock cycles)

3N‘-¢:z

NMI input

{18 + N} clock cycles
X

Start NMi service micraprogram {acknowladge cycle}

{63 + 3y + 2z) clock cycles

Set vactor address in PC

(7 + mi clock cycles

Execute first instruction of NMI service routine

Rernaining number of execution clock cycles for the instruction being executed by the CPU at this time
Number of wait cycles for memory when PC, PS, and PSW are saved on a stack

Number of wait cycies for memory when vector PC or vector PS is read

Number of wait cycles for memaory when the first instruction of interrupt service routine is fetched (when
two bytes are fetched, instruction execution is started)

115

CHAPTER 4 INTERRUPT FUNCTIONS

4.17.6 V35+’s INT response time {(number of system clock cycles)

INT input

{8 + N} clock cyclas

Start INT sarvice microprogram (acknowiedge cycle)

(57 + 3y} clock cycles

Set vector address in PC

{7 +) clock cycles

Execute first instruction of INT service routine

Remaining number of execution clock cycles for the instruction being executed by the CPU at this time
Number of wait cycles for memory when PC, PS, and PSW are saved on a stack

Number of wait cycies for memory when vector PC or vector PS is read

Number of wait cycles for memory when the first instruction of interrupt service routine is fetched {when
two bytes are fetched, instruction execution is started)

3N <z

116

